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Magnet is an inductor, henceD — — 0 Qw

>V

A The 14m long LHC dipole has a stored energy dfJat
the design filed of 8.4 T

A Smallerscale(~1 m long) prototype acceleratordipolesand quadrupolesat
their operationalcurrentare typicallyin 0.5-0.7 MJrange

This is a lot of energy!

U 0.7 MJ is energy of a car (2000 kg) moving at 60 m

U 0.7 MJ of energy is sufficient to heat up from 4 K and mkkg of copper!

U Equivalent He gas release is 254 L / kJ => 17908 gas!
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L What is a quench?

A formation of arunrecoverablenormal zone within a superconductor
Quenching will convetnergy supplied by the current sourédlDmagnet stored energy intbeat.

2 A Whenquenchoccurs,energyreleaseis localizedin the normal zone
| of the conductor!

A If that zoneis smallin volume, Quenchmay lead to unrepairable
magnet damage of the magnet windings or other electrical
infrastructure(splicescurrentleads,etcX).

Quench) 0 O i
i‘)"

(resistive zone) )
(@) A Quenchprotection is an array of techniquesusedto prevent such
damagefrom occurring
]
Quench protection sequence: PROTEC}'
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L Quench in small-scale accelerator magnet

(movie)

Quench in the CCT3 dipote&0 kJ
of stored energy)

Quenchrelated damage in
the coil of HQO1
guadrupole
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L Onset of a quench: minimum propagating zone

It only takes a small volume fraction of a curr@atrrying superconductor to be heated above its transition
temperature to start a quench.
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For a pureNbTiwire (no stabilizer)a  ~1 nmm
For a multiflamentaryNbTistrand:a  ~1 mm

J]

r ¢ resistivity in normal state
| ¢ heat conductivity
Given that specific heat of metals at low temperatureslif00 times less than at room temperature, this yields a very small
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L Minimum quench energy o
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Fig 2. Schematic of the heater location on a strand in the cable. [ A—4.2KCu/Sc 1.3 ’ ! ) !
—aA-——1.9K Cu/Sc 1.3 : !
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A.K. Ghosh et al., 1997 1 - ‘ . L
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Fig. 3. MQE for two LHC type strands with different Cu/Sc ratio.
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L What can start a quench?

A Intrinsic
- Conductor instability with 107
respect to flux jumps : o e
- Wi
Conductor damage / broken 10-2} V/ Nt N
strands ; .
Flux Particle
- AC losses - Jumping Showers
E
. _ S 1073
A Mechanical o, -
i > gi:
- Motion of the conductor
. i . 1074
- Cracking and delamination of ;
impregnation epoxy _
] . | | | |
A Thermal o _ 1079076 10° 10* 107 102 0.1 1 10
- Excess heating in splices or Time [s]

current leads _
Disturbance spectra of accelerator magnets

- External heat leaks (YlwasZ &/ &S {ddRASa Ay { dzZLISND2yRdzO0 A
- Nuclear and beam radiation Springer 2009)

Quenching is therefore considered a natural part of the magnet operation, and magnet
systems should be designed to handle it safely.
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Note on beam losses and guenching
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Shortduration (t < 50 ps) The local quench
level is determined predominantly by the
volumetric heat capacity of a dry cable The
guenchlevelin this regimeis quantified by the

Minimum QuenchEnergyDensity(MQED.

Intermediateduration (50 ps - 5 s). Theliquid
helium in the cableintersticesand, to a lesser
extent, around the insulated conductor playsa
crucialrole.

Steadystate (t > 5 s). The heat is constantly
removedwith a rate that is mainly determined
by the heattransferto the heliumbath through
the cable insulation The quench level, is
expressedsa Minimum QuenchPowerDensity
(MQPD)
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L Quench propagation: 1D model

Hot spot
[ 42
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Heat balance: QY 0"y TO Ohmicheat generation
Heat capacity, Nl
0= P uh'Y h
Qo TQQ( Qu'y
SUbStituting:, O( 0 (‘)s Heat conductivity

2 s @y mh ) D
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General solution for the equation:

Y (Y V)AgP)h m a travelling wave solution

4() Y (Y VWAAPO)h T

.U _
Then, substituting into the heat equationV 5y vy

Assuming® Y DU vty Y ¥
umi U U
J YUY Y Dresney 1994

v [m/s]

10T

adiabatic with cooling
h=0 h=#0
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Quench propagation in 3D

Transverse propagation (0.1 m/s)
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Longitudinal propagation: 280 m/s

S

Resistance increase in the coil caused by the expansion
of the normal zone AND continuing temperature increase
within the normal zone

The total coil resistance can be found by integrating r (T,B)
over the normal volume

Velocity (m/s)
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Tmax=24 K Time =30 ms
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Tmax=62 K Time =130 ms

P.Ferracin 2009
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HERKELEY Las

Quench simulations: FEA

ANSY § thermal electrical model

NODAL SOLUTION FEB 13 2002
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Model layerl

CourtesyS.Caspi
(movie)
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Lumped el ementmodeled n co+t

LEDETmethod (Lumped Element Dynamic Ele€tioermal)

ELECTRICAL
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548 Voltage distribution in a quenching magnet
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Voltage tap

5
w(@ OVOY o0 p 5
w (M () =0 => peaks during the quench Voltage taps examples

Internal magnet voltage during quench may reach several hundreds of volts!
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Detecting and localizing quenches

CCT3 Nfsn dipole HD3 NRSn dipole

‘HalfMagNeg_ VmagMagPos

quenching

3A43:-30.4ms  Quench is ~5 cm from th&apA4 in the A43
3A54:-25.3ms segment

SAB5: +4.5mS gt = (253 + 4.5) = 29.81s=>V = 10.1 m/s
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